• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Friedrich-Alexander-Universität Chair of Digital Industrial Service Systems WISO
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Fachbereich Wirtschafts- und Sozialwissenschaften
Suche öffnen
  • Deutsch
  • Process Mining Software Comparison
  1. Friedrich-Alexander-Universität
  2. Fachbereich Wirtschafts- und Sozialwissenschaften
Friedrich-Alexander-Universität Chair of Digital Industrial Service Systems WISO
Navigation Navigation close
  • Home
  • Teaching
  • Research
  • Practice
  • Team
  • How To Find Us
  • Open Positions
  1. Home
  2. Team
  3. Dr. Sven Weinzierl

Dr. Sven Weinzierl

In page navigation: Team
  • Prof. Dr. Martin Matzner
  • Dr. Sven Weinzierl
  • Charlotte Bahr
  • Pepe Bellin
  • Sebastian Dunzer
  • Martin Käppel
  • Mohammed Al Ghadban
  • Annina Ließmann
  • Willi Tang
  • Prof. Dr. Sandra Zilker
  • Weixin Wang

Dr. Sven Weinzierl

Sven Weinzierl

Dr. Sven Weinzierl

School of Business, Economics and Society
Chair of Digital Industrial Service Systems

Room: Room 33.1.19
Fürther Straße 248
90429 Nürnberg
  • Phone number: +499115302-96486
  • Email: sven.weinzierl@fau.de

Research Areas

  • Algorithmic research (e.g., interpretable machine learning algorithms)
  • Design science research (e.g., trustworthy artificial intelligence systems)
  • Behavioral research (e.g., user interaction with explainable and interpretable artificial intelligence)

Teaching

  • Seminar Digitale Dienstleistungssysteme an der WiSo
  • Forschungsmethodisches Seminar
  • Process Analytics (Lecture)

CV

Work Experience

Since 08/2018 Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
Researcher | Chair of Digital Industrial Service Systems
09/2017 – 12/2017 DATEV eG
Working student | Artificial Intelligence / Machine Learning
05/2017 – 07/2017 MHP Management- und IT-Beratung GmbH
Working student | Predictive Analytics
03/2015 – 07/2015 MHP Management- und IT-Beratung GmbH
Intern | Business Intelligence
01/2014 – 10/2014 DATEV eG
Working student | Software Engineering
08/2011 – 12/2013 Ribe Holding GmbH & Co. KG
Working student | Software Development in Systems Integration

Education

08/2018 – 04/2022 Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
Doctoral Degree | Information Systems
04/2016 – 06/2018 University of Bamberg
Master of Science | Information Systems
10/2012 – 03/2016 Ansbach University
Bachelor of Arts | Information Systems
09/2008 – 07/2011 Ribe Holding GmbH & Co. KG
IHK Professional Training | IT Merchant

Publications

2025

  • Dunzer S., Zilker S., Weinzierl S., Tang W., Dieckmann F., Stenglein S., Rist J., Matzner M.:
    A technology-specific process mining maturity grid for manufacturing and logistics
    In: International Journal of Production Research (2025)
    ISSN: 0020-7543
    DOI: 10.1080/00207543.2025.2451810
    URL: https://www.tandfonline.com/doi/full/10.1080/00207543.2025.2451810
  • Herchenbach M., Weinzierl S., Zilker S., Schwulera E., Matzner M.:
    Adaptive AI-based causal control: Toward an autonomous factory in solder paste printing
    In: Computers in Industry (2025)
    ISSN: 0166-3615
    DOI: 10.1016/j.compind.2025.104256
    URL: https://www.sciencedirect.com/science/article/pii/S0166361525000211
  • Kruschel S., Hambauer N., Weinzierl S., Zilker S., Kraus M., Zschech P.:
    Challenging the performance-interpretability trade-off: An evaluation of interpretable machine learning models
    In: Business & Information Systems Engineering (2025)
    ISSN: 1867-0202
    DOI: 10.1007/s12599-024-00922-2
    URL: https://link.springer.com/article/10.1007/s12599-024-00922-2
  • Rosenberger J., Wolfrum L., Weinzierl S., Kraus M., Zschech P.:
    CareerBERT: Matching resumes to ESCO jobs in a shared embedding space for generic job recommendations (forthcoming)
    In: Expert Systems With Applications (2025)
    ISSN: 0957-4174

2024

  • Kraus M., Tschernutter D., Weinzierl S., Zschech P.:
    Interpretable generalized additive neural networks
    In: European Journal of Operational Research (2024)
    ISSN: 0377-2217
    DOI: 10.1016/j.ejor.2023.06.032
    URL: https://www.sciencedirect.com/science/article/pii/S0377221723005027
  • Weinzierl S., Zilker S., Dunzer S., Matzner M.:
    Machine learning in business process management: A systematic literature review
    In: Expert Systems With Applications 253 (2024), Article No.: 124181
    ISSN: 0957-4174
    DOI: 10.1016/j.eswa.2024.124181
    URL: https://www.sciencedirect.com/science/article/pii/S0957417424010479
  • Zilker S., Weinzierl S., Kraus M., Zschech P., Matzner M.:
    A machine learning framework for interpretable predictions in patient pathways: The case of predicting ICU admission for patients with symptoms of sepsis
    In: Health Care Management Science 27 (2024), p. 136-167
    ISSN: 1386-9620
    DOI: 10.1007/s10729-024-09673-8
    URL: https://link.springer.com/article/10.1007/s10729-024-09673-8#article-info

2023

  • Oberdorf F., Schaschek M., Weinzierl S., Stein N., Matzner M., Flath C.:
    Predictive end-to-end enterprise process network monitoring
    In: Business & Information Systems Engineering (2023)
    ISSN: 1867-0202
    DOI: 10.1007/s12599-022-00778-4
    URL: https://link.springer.com/article/10.1007/s12599-022-00778-4

2022

  • Weinzierl S., Wolf V., Pauli T., Beverungen D., Matzner M.:
    Detecting temporal workarounds in business processes – A deep-learning-based method for analysing event log data
    In: Journal of Business Analytics 5 (2022), p. 76-100
    ISSN: 2573-234X
    DOI: 10.1080/2573234X.2021.1978337
    URL: https://www.tandfonline.com/doi/full/10.1080/2573234X.2021.1978337

2021

  • Stierle M., Weinzierl S., Harl M., Matzner M.:
    A technique for determining relevance scores of process activities using graph-based neural networks
    In: Decision Support Systems 144 (2021), Article No.: 113511
    ISSN: 0167-9236
    DOI: 10.1016/j.dss.2021.113511
    URL: http://www.sciencedirect.com/science/article/pii/S016792362100021X

2020

  • Brunk J., Stottmeister J., Weinzierl S., Matzner M., Becker J.:
    Exploring the effect of context information on deep learning business process predictions
    In: Journal of Decision Systems (2020), p. 1-16
    ISSN: 1246-0125
    DOI: 10.1080/12460125.2020.1790183
    URL: https://www.tandfonline.com/doi/abs/10.1080/12460125.2020.1790183
  • Harl M., Weinzierl S., Stierle M., Matzner M.:
    Explainable predictive business process monitoring using gated graph neural networks
    In: Journal of Decision Systems (2020), p. 1-16
    ISSN: 1246-0125
    DOI: 10.1080/12460125.2020.1780780
    URL: https://www.tandfonline.com/doi/abs/10.1080/12460125.2020.1780780

2024

  • Harl M., Zilker S., Weinzierl S.:
    Towards automated business process redesign in runtime using generative machine learning
    European Conference on Information Systems (Paphos, Cyprus)
    In: Proceedings of the 32nd European Conference on Information Systems 2024
  • Ließmann A., Wang W., Weinzierl S., Zilker S., Matzner M.:
    Transfer learning for predictive process monitoring
    European Conference on Information Systems (Paphos, Cyprus)
    In: Proceedings of the 32nd European Conference on Information Systems 2024
  • Ließmann A., Zilker S., Weinzierl S., Sukhareva M., Matzner M.:
    Predicting customer satisfaction in service processes using multilingual large language models
    Hawaii International Conference on System Sciences (Waikiki, Honolulu, Hawaii)
    In: Proceedings of the 57th Hawaii International Conference on System Sciences 2024
  • Weinzierl S., Zilker S., Brunk J., Revoredo K., Matzner M., Becker J.:
    Context-aware explanations of accurate predictions in service processes
    Hawaii International Conference on System Sciences (Waikiki, Honolulu, Hawaii)
    In: Proceedings of the 57th Hawaii International Conference on System Sciences 2024
  • Weinzierl S., Zilker S., Zschech P., Kraus M., Leibelt T., Matzner M.:
    How risky is my AI system? A method for transparent classification of AI system descriptions by regulated AI risk categories
    International Conference on Information Systems (Bangkok, Thailand)
    In: Proceedings of the 45th International Conference on Information Systems 2024
    URL: https://open.fau.de/bitstreams/092b306d-86fb-420d-8ba1-57172d11611a/download

2023

  • Arnold S., Yesilbas D., Weinzierl S.:
    Driving context into text-to-text privatization
    Annual Meeting of the Association for Computational Linguistics (Toronto)
    In: Association for Computational Linguistics (ed.): Proceedings of the 3rd Workshop on Trustworthy Natural Language Processing 2023
    DOI: 10.18653/v1/2023.trustnlp-1.2
    URL: https://aclanthology.org/2023.trustnlp-1.2
  • Arnold S., Yesilbas D., Weinzierl S.:
    Guiding text-to-text privatization by syntax
    Annual Meeting of the Association for Computational Linguistics (Toronto)
    In: Association for Computational Linguistics (ed.): Proceedings of the 3rd Workshop on Trustworthy Natural Language Processing 2023
    DOI: 10.18653/v1/2023.trustnlp-1.14
    URL: https://aclanthology.org/2023.trustnlp-1.14/
  • Drodt C., Weinzierl S., Matzner M., Delfmann P.:
    Predictive Recommining: Learning relations between event log characteristics and machine learning approaches for supporting predictive process monitoring
    International Conference on Advanced Information Systems Engineering (Zaragoza, 12. June 2023 - 16. June 2023)
    In: Proceedings of the 35th International Conference on Advanced Information Systems Engineering Forum 2023
    DOI: 10.1007/978-3-031-34674-3_9
  • Zilker S., Weinzierl S., Zschech P., Kraus M., Matzner M.:
    Best of both worlds: Combining predictive power with interpretable and explainable results for patient pathway prediction
    European Conference on Information Systems (Kristiansand, 13. June 2023 - 16. June 2023)
    In: Proceedings of the 31st European Conference on Information Systems 2023
    DOI: 10.25593/open-fau-1123
    URL: https://open.fau.de/bitstreams/c8ea3d7e-7fb9-4932-9828-501af75d1f89/download

2022

  • Cabrera Pérez L., Weinzierl S., Zilker S., Matzner M.:
    Text-aware predictive process monitoring with contextualized word embeddings
    International Conference on Business Process Management (Münster)
    In: Proceedings of the BPM 2022 International Workshops 2022
    DOI: 10.1007/978-3-031-25383-6_22
  • Weinzierl S., Bartelheimer C., Zilker S., Beverungen D., Matzner M.:
    A method for predicting workarounds in business processes
    Pacific Asia Conference on Information Systems (Taipei-Sydney, 5. July 2022 - 9. July 2022)
    In: Proceedings of the 25th Pacific Asia Conference on Information Systems 2022
  • Zschech P., Weinzierl S., Hambauer N., Zilker S., Kraus M.:
    GAM(e) changer or not? An evaluation of interpretable machine learning models based on additive model constraints
    European Conference on Information Systems (Timisoara, 5. July 2022 - 9. July 2022)
    In: Proceedings of the 30th European Conference on Information Systems 2022

2021

  • Drodt C., Weinzierl S., Matzner M., Delfmann P.:
    The recomminder: A decision support tool for predictive business process monitoring
    International Conference on Business Process Management (Rom)
    In: Proceedings of the BPM 2021 Demonstration & Resources Track, Best BPM Dissertation Award, and Doctoral Consortium 2021
  • Stierle M., Brunk J., Weinzierl S., Zilker S., Matzner M., Becker J.:
    Bringing light into the darkness - A systematic literature review on explainable predictive business process monitoring techniques
    European Conference on Information Systems (Marrakesch)
    In: Proceedings of the 29th European Conference on Information Systems 2021
  • Weinzierl S.:
    Exploring gated graph sequence neural networks for predicting next process activities
    International Conference on Business Process Management (Rom)
    In: Proceedings of the BPM 2021 International Workshops. 2021
    DOI: 10.1007/978-3-030-94343-1_3
  • Weinzierl S., Dunzer S., Tenschert J., Zilker S., Matzner M.:
    Predictive business process deviation monitoring
    European Conference on Information Systems (Marrakesch)
    In: Proceedings of the 29th European Conference on Information Systems 2021

2020

  • Marx E., Stierle M., Weinzierl S., Matzner M.:
    Closing the gap between smart manufacturing applications and data management
    International Conference on Wirtschaftsinformatik (WI) (Potsdam, 9. March 2020 - 11. March 2020)
    In: Proceedings of the 15th International Conference on Wirtschaftsinformatik (WI) 2020
    DOI: 10.30844/wi_2020_u1-marx
    URL: https://library.gito.de/2021/07/wi2020-community-tracks-9/
  • Nguyen A., Chatterjee S., Weinzierl S., Schwinn L., Matzner M., Eskofier B.:
    Time matters: Time-aware LSTMs for predictive business process monitoring
    International Conference on Process Mining (Padua, 4. October 2020 - 9. October 2020)
    In: Proceedings of the ICPM 2020 International Workshops 2020
    DOI: 10.1007/978-3-030-72693-5_9
  • Weinzierl S., Dunzer S., Zilker S., Matzner M.:
    Prescriptive business process monitoring for recommending next best actions
    International Conference on Business Process Management (Sevilla, 13. September 2020 - 18. September 2020)
    In: Proceedings of the 18th International Conference on Business Process Management Forum 2020
    DOI: 10.1007/978-3-030-58638-6_12
    URL: https://link.springer.com/content/pdf/10.1007/978-3-030-58638-6_12.pdf
  • Weinzierl S., Stierle M., Zilker S., Matzner M.:
    A next click recommender system for web-based service analytics with context-aware LSTMs
    Hawaii International Conference on System Sciences (Grand Wailea, Maui, Hawaii, 7. January 2020 - 10. January 2020)
    In: Proceedings of the 53rd Hawaii International Conference on System Sciences 2020
    DOI: 10.24251/HICSS.2020.190
    URL: http://hdl.handle.net/10125/63929
  • Weinzierl S., Wolf V., Pauli T., Beverungen D., Matzner M.:
    Detecting workarounds in business processes — A deep learning method for analyzing event logs
    European Conference on Information Systems (Marrakesch, 15. June 2020 - 17. June 2020)
    In: Proceedings of the 28th European Conference on Information Systems 2020
    URL: https://www.researchgate.net/publication/341180737_DETECTING_WORKAROUNDS_IN_BUSINESS_PROCESSES_-_A_DEEP_LEARNING_METHOD_FOR_ANALYZING_EVENT_LOGS
  • Weinzierl S., Zilker S., Brunk J., Revoredo K., Matzner M., Becker J.:
    XNAP: Making LSTM-based next activity predictions explainable by using LRP
    International Conference on Business Process Management (Sevilla, 13. September 2020 - 18. September 2020)
    In: Proceedings of the BPM 2020 International Workshops. 2020
    DOI: 10.1007/978-3-030-66498-5_10
  • Weinzierl S., Zilker S., Stierle M., Park G., Matzner M.:
    From predictive to prescriptive process monitoring: Recommending the next best actions instead of calculating the next most likely events
    Internationale Tagung Wirtschaftsinformatik (Potsdam, 8. March 2020 - 11. March 2020)
    In: Proceedings of the 15th International Conference on Wirtschaftsinformatik 2020
    DOI: 10.30844/wi_2020_c12-weinzierl
    URL: https://library.gito.de/open-access-pdf/C12_Prescriptive_process_monitoring_-_a_technique_for_determining_next_best_actions_resub.pdf

2019

  • Weinzierl S., Revoredo K., Matzner M.:
    Predictive business process monitoring with context information from documents
    European Conference on Information Systems (Stockholm, 8. June 2019 - 14. June 2019)
    In: Proceedings of the 27th European Conference on Information Systems 2019
    URL: https://www.researchgate.net/publication/333245929_PREDICTIVE_BUSINESS_PROCESS_MONITORING_WITH_CONTEXT_INFORMATION_FROM_DOCUMENTS

2024

  • Ackermann L., Käppel M., Marcus L., Moder L., Dunzer S., Hornsteiner M., Ließmann A., Zisgen Y., Empl P., Herm LV., Neis N., Neuberger J., Schaschek M., Weinzierl S., Wörderhoff N., Jablonski S., Koschmider A., Kratsch W., Matzner M., Rinderle-Ma S., Röglinger M., Schönig S., Winkelmann A.:
    Recent Advances in Data-Driven Business Process Management
    (2024)
    Open Access: https://arxiv.org/abs/2406.01786
    URL: https://arxiv.org/abs/2406.01786
    (online publication)
FAU Erlangen-Nürnberg
Chair of Digital Industrial Service Systems

Fürther Str. 248
90429 Nürnberg
  • Login
  • Imprint
  • Privacy
  • Accessibility
  • Facebook
  • Twitter
  • Instagram
Up