• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Friedrich-Alexander-Universität Chair of Digital Industrial Service Systems WISO
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Fachbereich Wirtschafts- und Sozialwissenschaften
Suche öffnen
  • Deutsch
  • Process Mining Software Comparison
  1. Friedrich-Alexander-Universität
  2. Fachbereich Wirtschafts- und Sozialwissenschaften
Friedrich-Alexander-Universität Chair of Digital Industrial Service Systems WISO
Navigation Navigation close
  • Home
  • Teaching
  • Research
  • Practice
  • Team
  • How To Find Us
  • Open Positions
  1. Home
  2. Research
  3. Business Process Management
  4. Deep Learning im Kontext von Predictive Maintenance

Deep Learning im Kontext von Predictive Maintenance

In page navigation: Research
  • Service Systems
  • Decision Support
  • Information Management
  • Business Process Management
    • Identifikation von Automatisierungspotentialen mit Process Mining (IdAP)
    • Artificial-Intelligence to Reveal Potentials for Semi-Process-Automation
    • Building Bridges - Reinforcement Learning on Molecular and Process Graphs
    • Analyse von Positonsdaten zur Ermittlung von Durchlaufzeiten in der Fertigung
    • Bayessche Vorhersagemodelle auf Basis von Kontextinformationen für das Monitoring von Geschäftsprozessen
    • Initiation of Bilateral Cooperation with Brazil - Evaluating Standards for Interorganizational Process Integration in Brazilian-German Value Networks
    • Multidimensionales Conformance Checking für Prozesse
    • Propelling Business Process Management by Research and Innovation Staff Exchange
    • Deep Learning im Kontext von Predictive Maintenance
    • Joint German-Russian Innovation Forum "Promoting business process management excellence in Russia" (PropelleR 2012)
  • Further research (Chair of Digital Industrial Service Systems)

Deep Learning im Kontext von Predictive Maintenance

Deep Learning im Kontext von Predictive Maintenance

(Third Party Funds Group – Sub project)

Overall project: Software Campus 2.0
Project leader: Sandra Zilker
Start date: 1. January 2020
End date: 31. December 2021
Acronym: DeLePred
Funding source: Bundesministerium für Forschung, Technologie und Raumfahrt (BMFTR)

External Partners:

  • TRUMPF Laser- und Systemtechnik GmbH

Publications:

  • Zilker S., Marx E., Stierle M., Matzner M.:
    Process Mining for Advanced Service Analytics – From Process Efficiency to Customer Encounter and Experience
    Hawaii International Conference on System Sciences (Maui, Hawaii, 4. January 2022 - 7. January 2022)
    In: Proceedings of the 55th Hawaii International Conference on System Sciences 2022
    DOI: 10.24251/HICSS.2022.239
    URL: http://hdl.handle.net/10125/79571
  • Zilker S.:
    Designing a Method for Resource-specific Next Activity Prediction
    Pacific Asia Conference on Information Systems (PACIS) (Taipei - Sydney // Virtual, 5. July 2022 - 9. July 2022)
    In: Proceedings of the 25th Pacific Asia Conference on Information Systems 2022
FAU Erlangen-Nürnberg
Chair of Digital Industrial Service Systems

Fürther Str. 248
90429 Nürnberg
  • Login
  • Imprint
  • Privacy
  • Accessibility
  • Facebook
  • Twitter
  • Instagram
Up