• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Friedrich-Alexander-Universität Chair of Digital Industrial Service Systems WISO
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Fachbereich Wirtschafts- und Sozialwissenschaften
Suche öffnen
  • Deutsch
  • Process Mining Software Comparison
  1. Friedrich-Alexander-Universität
  2. Fachbereich Wirtschafts- und Sozialwissenschaften
Friedrich-Alexander-Universität Chair of Digital Industrial Service Systems WISO
Navigation Navigation close
  • Home
  • Teaching
  • Research
  • Practice
  • Team
  • How To Find Us
  • Open Positions
  1. Home
  2. Teaching
  3. Courses
  4. Angewandte Datenanalyse zur Vorhersage des Stromverbrauchs in Deutschland – Chancen und Herausforderungen im Kontext der deutschen Energiewende

Angewandte Datenanalyse zur Vorhersage des Stromverbrauchs in Deutschland – Chancen und Herausforderungen im Kontext der deutschen Energiewende

In page navigation: Teaching
  • Thesis
  • Courses
    • Angewandte Datenanalyse zur Vorhersage des Stromverbrauchs in Deutschland – Chancen und Herausforderungen im Kontext der deutschen Energiewende
    • BPM Winter School 2020/21
    • Business and Information Systems Engineering
    • Business Process Management (Bachelor)
    • Forschungsmethodisches Seminar / Seminar Information Systems (Bachelor)
    • IIS Seminar: Developing Prescriptive Process Mining Systems
    • Internet of Things and Industrial Services (Masters, WS)
    • Introduction to Computer Science (Masters, WS)
    • IT-Based Process Automation
    • Process Analytics (Masters, WS)
    • Service Management and Service Engineering - Lecture and Exercise
    • TS410 - Integrated Business Process in SAP S/4HANA

Angewandte Datenanalyse zur Vorhersage des Stromverbrauchs in Deutschland – Chancen und Herausforderungen im Kontext der deutschen Energiewende

Annina Ließmann

Annina Ließmann, M. Sc.

School of Business, Economics and Society
Chair of Digital Industrial Service Systems

Room: Room 33.1.07
Fürther Str. 248
90429 Nürnberg
  • Phone number: +499115302-96485
  • Email: annina.liessmann@fau.de
Willi Tang

Willi Tang, M. Sc.

School of Business, Economics and Society
Chair of Digital Industrial Service Systems

Room: Room 33.1.07
Fürther Str. 248
90429 Nürnberg
  • Phone number: +499115302-96484
  • Email: willi.tang@fau.de
This seminar is only offered in German.

Course content

Description

As the energy transition in Germany progresses, renewable energies such as wind and solar power have become central pillars of electricity generation. At the same time, these energy sources bring challenges, including the unpredictability and variability of generation. This project seminar aims to offer students the opportunity to work independently and in cooperation with a practice partner to develop and implement data analyses to predict electricity generation and prepare them for business decisions.

Requirements

  • GOP modules all passed
  • BPM or SMSE passed with at least 2.3 (“good”)
  • Sound knowledge of German (at least B2 according to the Common European Framework of Reference for Languages)
  • Basic programming skills in Python or R

Learning objectives & competences

The students can…

  • independently develop and apply data analysis methods to forecast electricity generation
  • identifying the opportunities and challenges of data analysis in the context of the energy transition
  • develop practical solutions to support business decisions

Fitting into the sample cirriculum

From the 4th semester

Usability of the module

This module can be taken by students in the Bachelor’s degree programme Wirtschaftsinformatik. Students can acquire 10 ECTS in this module.

Further information

Language of instruction German
Course and examination achievements Seminar paper and presentation (70% + 30%)
Frequency of offer Annual in SS, WS
Workload Private study: 220h, attendance time: 80h
Duration of the module 1 semester
To the StudOn course
FAU Erlangen-Nürnberg
Chair of Digital Industrial Service Systems

Fürther Str. 248
90429 Nürnberg
  • Login
  • Imprint
  • Privacy
  • Accessibility
  • Facebook
  • Twitter
  • Instagram
Up